EconPapers    
Economics at your fingertips  
 

On forecasting counts

Brajendra C. Sutradhar
Additional contact information
Brajendra C. Sutradhar: Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, Canada, Postal: Department of Mathematics and Statistics, Memorial University of Newfoundland, St John's, Canada

Journal of Forecasting, 2008, vol. 27, issue 2, 109-129

Abstract: Forecasting for a time series of low counts, such as forecasting the number of patents to be awarded to an industry, is an important research topic in socio-economic sectors. Recently (2004), Freeland and McCabe introduced a Gaussian type stationary correlation model-based forecasting which appears to work well for the stationary time series of low counts. In practice, however, it may happen that the time series of counts will be non-stationary and also the series may contain over-dispersed counts. To develop the forecasting functions for this type of non-stationary over-dispersed data, the paper provides an extension of the stationary correlation models for Poisson counts to the non-stationary correlation models for negative binomial counts. The forecasting methodology appears to work well, for example, for a US time series of polio counts, whereas the existing Bayesian methods of forecasting appear to encounter serious convergence problems. Further, a simulation study is conducted to examine the performance of the proposed forecasting functions, which appear to work well irrespective of whether the time series contains small or large counts. Copyright © 2008 John Wiley & Sons, Ltd.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1002/for.1044 Link to full text; subscription required (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:27:y:2008:i:2:p:109-129

DOI: 10.1002/for.1044

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jof:jforec:v:27:y:2008:i:2:p:109-129