Forecasting volatility with noisy jumps: an application to the Dow Jones Industrial Average stocks
Basel Awartani ()
Journal of Forecasting, 2008, vol. 27, issue 3, 267-278
Abstract:
Empirical high-frequency data can be used to separate the continuous and the jump components of realized volatility. This may improve on the accuracy of out-of-sample realized volatility forecasts. A further improvement may be realized by disentangling the two components using a sampling frequency at which the market microstructure effect is negligible, and this is the objective of the paper. In particular, a significant improvement in the accuracy of volatility forecasts is obtained by deriving the jump information from time intervals at which the noise effect is weak. Copyright © 2008 John Wiley & Sons, Ltd.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1057 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:27:y:2008:i:3:p:267-278
DOI: 10.1002/for.1057
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().