Retail default prediction by using sequential minimal optimization technique
Yu-Chiang Hu and
Jake Ansell
Additional contact information
Yu-Chiang Hu: Barclays Capital, London, UK, Postal: Barclays Capital, London, UK
Jake Ansell: Management School and Economics, University of Edinburgh, UK, Postal: Management School and Economics, University of Edinburgh, UK
Journal of Forecasting, 2009, vol. 28, issue 8, 651-666
Abstract:
This paper employed sequential minimal optimization (SMO) to develop default prediction model in the US retail market. Principal components analysis is used for variable reduction purposes. Four standard credit scoring techniques-naïve Bayes, logistic regression, recursive partitioning and artificial neural network-are compared to SMO, using a sample of 195 healthy firms and 51 distressed firms over five time periods between 1994 and 2002. The five techniques perform well in predicting default particularly one year before financial distress. Furthermore, the prediction still remains sound even 5 years before default. No single methodology has the absolute best classification ability, as the model performance varies in terms of different time periods and variable groups. External influences have greater impacts on the naïve Bayes than other techniques. In terms of similarity with Moody's ranking, SMO excelled over other techniques in most of the time periods. Copyright © 2008 John Wiley & Sons, Ltd.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1110 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:28:y:2009:i:8:p:651-666
DOI: 10.1002/for.1110
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().