Adaptive Smoothing of Digital Images: The R Package adimpro
Jörg Polzehl and
Karsten Tabelow
Journal of Statistical Software, 2007, vol. 019, issue i01
Abstract:
Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagationseparation approach by (Polzehl and Spokoiny 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples.
Date: 2007-03-27
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v019i01/v19i01.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... adimpro_0.4.2.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... 19i01/Examples.R.zip
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:019:i01
DOI: 10.18637/jss.v019.i01
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().