Deconvolution Estimation in Measurement Error Models: The R Package decon
Xiao-Feng Wang and
Bin Wang
Journal of Statistical Software, 2011, vol. 039, issue i10
Abstract:
Data from many scientific areas often come with measurement error. Density or distribution function estimation from contaminated data and nonparametric regression with errors in variables are two important topics in measurement error models. In this paper, we present a new software package decon for R, which contains a collection of functions that use the deconvolution kernel methods to deal with the measurement error problems. The functions allow the errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the fast Fourier transform algorithm for density estimation with error-free data to the deconvolution kernel estimation. We discuss the practical selection of the smoothing parameter in deconvolution methods and illustrate the use of the package through both simulated and real examples.
Date: 2011-03-09
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v039i10/v39i10.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 0/decon_1.2-2.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v039i10/v39i10.R
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:039:i10
DOI: 10.18637/jss.v039.i10
Access Statistics for this article
Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis
More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().