EconPapers    
Economics at your fingertips  
 

Factor Analysis for Multiple Testing (FAMT): An R Package for Large-Scale Significance Testing under Dependence

David Causeur, Chloe Friguet, Magalie Houee-Bigot and Maela Kloareg

Journal of Statistical Software, 2011, vol. 040, issue i14

Abstract: The R package FAMT (factor analysis for multiple testing) provides a powerful method for large-scale significance testing under dependence. It is especially designed to select differentially expressed genes in microarray data when the correlation structure among gene expressions is strong. Indeed, this method reduces the negative impact of dependence on the multiple testing procedures by modeling the common information shared by all the variables using a factor analysis structure. New test statistics for general linear contrasts are deduced, taking advantage of the common factor structure to reduce correlation and consequently the variance of error rates. Thus, the FAMT method shows improvements with respect to most of the usual methods regarding the non discovery rate and the control of the false discovery rate (FDR). The steps of this procedure, each of them corresponding to R functions, are illustrated in this paper by two microarray data analyses. We first present how to import the gene ex- pression data, the covariates and gene annotations. The second step includes the choice of the optimal number of factors, the factor model fitting, and provides a list of selected genes according to a preset FDR control level. Finally, diagnostic plots are provided to help the user interpret the factors using available external information on either genes or arrays.

Date: 2011-05-12
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v040i14/v40i14.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... 0i14/FAMT_2.3.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v040i14/v40i14.R
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v040i14/Expr.txt
https://www.jstatsoft.org/index.php/jss/article/do ... le/v040i14/covar.txt

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:040:i14

DOI: 10.18637/jss.v040.i14

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:040:i14