EconPapers    
Economics at your fingertips  
 

Multivariate-From-Univariate MCMC Sampler: The R Package MfUSampler

Alireza S. Mahani and Mansour T. A. Sharabiani

Journal of Statistical Software, 2017, vol. 078, issue c01

Abstract: The R package MfUSampler provides Markov chain Monte Carlo machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as the slice sampler and the adaptive rejection sampler. The multivariate wrapper performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, package MfUSampler provides a reliable package for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as taking advantage of conditional independence, and high-performance implementation of function evaluations. Utility functions for MCMC diagnostics as well as sample-based construction of predictive posterior distributions are provided in MfUSampler.

Date: 2017-06-13
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.jstatsoft.org/index.php/jss/article/view/v078c01/v78c01.pdf
https://www.jstatsoft.org/index.php/jss/article/do ... Sampler_1.0.4.tar.gz
https://www.jstatsoft.org/index.php/jss/article/do ... ile/v078c01/v78c01.R

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:jss:jstsof:v:078:c01

DOI: 10.18637/jss.v078.c01

Access Statistics for this article

Journal of Statistical Software is currently edited by Bettina Grün, Edzer Pebesma and Achim Zeileis

More articles in Journal of Statistical Software from Foundation for Open Access Statistics
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:jss:jstsof:v:078:c01