Time Series Simulation with Quasi Monte Carlo Methods
Jenny X. Li () and
Peter Winker
Computational Economics, 2003, vol. 21, issue 1_2, 23-43
Abstract:
This paper compares quasi Monte Carlo methods, in particular so-called (t, m, s)-nets, with classical Monte Carlo approaches for simulating econometric time-series models. Quasi Monte Carlo methods have found successful application in many fields, such as physics, image processing, and the evaluation of finance derivatives. However, they are rarely used in econometrics. Here, we apply both traditional and quasi Monte Carlo simulation methods to time-series models that typically arise in macroeconometrics. The numerical experiments demonstrate that quasi Monte Carlo methods outperform traditional ones for all models we investigate.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://journals.kluweronline.com/issn/0927-7099/contents (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
Journal Article: Time Series Simulation with Quasi Monte Carlo Methods (2003) 
Working Paper: Time Series Simulation With Quasi Monte Carlo Methods (2000)
Working Paper: TIME SERIES SIMULATION WITH QUASI-MONTE CARLO METHODS (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:21:y:2003:i:1_2:p:23-43
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().