Efficiency and Global Scale Characteristics on the “No Free Lunch” Assumption Only
Victor Podinovski
Journal of Productivity Analysis, 2004, vol. 22, issue 3, 227-257
Abstract:
In a production technology, the type of returns to scale (RTS) associated with an efficient decision making unit (DMU) is indicative of the direction of marginal rescaling that the DMU should undertake in order to improve its productivity. In this paper a concept of global returns to scale (GRS) is developed as an indicator of the direction in which the most productive scale size (MPSS) of an efficient DMU is achieved. The GRS classes are useful in assisting strategic decisions like those involving mergers of units or splitting into smaller firms. The two characterisations, RTS and GRS, are the same in a convex technology but generally different in a non-convex one. It is shown that, in a non-convex technology, the well-known method of testing RTS proposed by Färe et al. is in fact testing for GRS and not RTS. Further, while there are three types of RTS: constant, decreasing and increasing (CRS, DRS and IRS, respectively), the classification according to GRS includes the fourth type of sub-constant GRS, which describes a DMU able to achieve its MPSS by both reducing and increasing the scale of operations. The notion of GRS is applicable to a wide range of technologies, including the free disposal hull (FDH) and all polyhedral technologies used in data envelopment analysis (DEA). Copyright Kluwer Academic Publishers 2004
Keywords: Efficiency; Returns to scale; Most productive scale size; Data envelopment analysis; Free disposal hull (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11123-004-7575-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jproda:v:22:y:2004:i:3:p:227-257
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11123/PS2
DOI: 10.1007/s11123-004-7575-z
Access Statistics for this article
Journal of Productivity Analysis is currently edited by William Greene, Chris O'Donnell and Victor Podinovski
More articles in Journal of Productivity Analysis from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().