EconPapers    
Economics at your fingertips  
 

Estimating production frontiers and efficiency when output is a discretely distributed economic bad

Eduardo Fé

Journal of Productivity Analysis, 2013, vol. 39, issue 3, 285-302

Abstract: This article studies the estimation of production frontiers and efficiency scores when the commodity of interest is an economic bad with a discrete distribution. Existing parametric econometric techniques (stochastic frontier methods) assume that output is a continuous random variable but, if output is discretely distributed, then one faces a scenario of model misspecification. Therefore a new class of econometric models has been developed to overcome this problem. The Delaporte subclass of models is studied in detail, and tests of hypotheses are proposed to discriminate among parametric models. In particular, Pearson’s chi-squared test is adapted to construct a new kernel-based consistent Pearson test. A Monte Carlo experiment evaluates the merits of the new model and methods, and these are used to estimate the frontier and efficiency scores of the production of infant deaths in England. Extensions to the model are discussed. Copyright Springer Science+Business Media, LLC 2013

Keywords: Stochastic frontier; Delaporte distribution; Consistent misspecification test; Local likelihood; Pearson’s chi-square tests; Infant deaths; C01; C12; C13; C14; C16; C25; C46; C51; C52 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11123-012-0287-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:jproda:v:39:y:2013:i:3:p:285-302

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11123/PS2

DOI: 10.1007/s11123-012-0287-x

Access Statistics for this article

Journal of Productivity Analysis is currently edited by William Greene, Chris O'Donnell and Victor Podinovski

More articles in Journal of Productivity Analysis from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:jproda:v:39:y:2013:i:3:p:285-302