A Two-stage Stochastic Programming for the Integrated Emergency Mobility Facility Allocation and Road Network Design Under Uncertainty
Huatian Gong () and
Xiaoguang Yang ()
Additional contact information
Huatian Gong: Tongji University
Xiaoguang Yang: Tongji University
Networks and Spatial Economics, 2025, vol. 25, issue 2, No 7, 445-486
Abstract:
Abstract Emergency Mobility Facilities (EMFs) possess the capability to relocate dynamically, providing adequate responses to fluctuations in emergent demand patterns across temporal and spatial dimensions. This study proposes a two-stage stochastic programming model that integrates the EMF allocation problem and the road network design problem for disaster preparedness. The model takes into account uncertainties arising from emergency demand and road network congestion levels under various sizes and timings of disaster occurrences. The first-stage decision involves determining the fleet size of EMFs and identifying which road links’ travel time should be reduced. The second-stage decision pertains to the routing and schedule of each EMF for each disaster scenario. Due to considering various sources of uncertainty, the resulting model takes the form of a non-convex mixed-integer nonlinear program (MINLP). This poses computational challenges due to the inclusion of bilinear terms, implicit expressions, and the double-layered structure in the second-stage model, along with integer decision variables. A comprehensive set of techniques is applied to solve the model efficiently. This includes employing linearization techniques, converting the second-stage model into a single-level equivalent, transforming an integer variable into multiple binary variables, and utilizing other methods to equivalently reformulate the model into a mixed-integer linear programming problem (MILP). These transformations render the model amenable to solutions using the integer L-shaped method. A simplified example clarifies the solution procedures of the model and algorithm, establishing the theoretical foundation for their practical implementation. Subsequently, to empirically demonstrate the practicality of the proposed model and algorithm, a real-world case study is conducted, effectively validating their utility.
Keywords: EMF allocation; Road network design; Uncertainties; Stochastic programming; Integer L-shaped method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11067-024-09635-1 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09635-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11067/PS2
DOI: 10.1007/s11067-024-09635-1
Access Statistics for this article
Networks and Spatial Economics is currently edited by Terry L. Friesz
More articles in Networks and Spatial Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().