Value at risk estimation by quantile regression and kernel estimator
Alex Huang ()
Review of Quantitative Finance and Accounting, 2013, vol. 41, issue 2, 225-251
Abstract:
Risk management has attracted a great deal of attention, and Value at Risk (VaR) has emerged as a particularly popular and important measure for detecting the market risk of financial assets. The quantile regression method can generate VaR estimates without distributional assumptions; however, empirical evidence has shown the approach to be ineffective at evaluating the real level of downside risk in out-of-sample examination. This paper proposes a process in VaR estimation with methods of quantile regression and kernel estimator which applies the nonparametric technique with extreme quantile forecasts to realize a tail distribution and locate the VaR estimates. Empirical application of worldwide stock indices with 29 years of data is conducted and confirms the proposed approach outperforms others and provides highly reliable estimates. Copyright Springer Science+Business Media, LLC 2013
Keywords: Value at risk; Quantile regression; Kernel estimator; C10; C53; G10; G17 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11156-012-0308-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:rqfnac:v:41:y:2013:i:2:p:225-251
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/11156/PS2
DOI: 10.1007/s11156-012-0308-x
Access Statistics for this article
Review of Quantitative Finance and Accounting is currently edited by Cheng-Few Lee
More articles in Review of Quantitative Finance and Accounting from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().