Censored Regressors and Expansion Bias
Roberto Rigobon and
Thomas M. Stoker
No 4451-03, Working papers from Massachusetts Institute of Technology (MIT), Sloan School of Management
Abstract:
We show how using censored regressors leads to expansion bias, or estimated effects that are proportionally too large. We show the necessity of this effect in bivariate regression and illustrate the bias using results for normal regressors. We study the bias when there is a censored regressor among many regressors, and we note how censoring can work to undo errors-in-variables bias. We discuss several approaches to correcting expansion bias. We illustrate the concepts by considering how censored regressors can arise in the analysis of wealth effects on consumption, and on peer effects in productivity.
Keywords: Censored Regressors; Expansion Bias (search for similar items in EconPapers)
Date: 2004-03-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/1721.1/5054 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mit:sloanp:5054
Ordering information: This working paper can be ordered from
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA
Access Statistics for this paper
More papers in Working papers from Massachusetts Institute of Technology (MIT), Sloan School of Management MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA. Contact information at EDIRC.
Bibliographic data for series maintained by None ( this e-mail address is bad, please contact ).