Burning Sage: Reversing the Curse of Dimensionality in the Visualization of High-Dimensional Data
Ursula Laa (),
Dianne Cook () and
Stuart Lee ()
No 36/20, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
In high-dimensional data analysis the curse of dimensionality reasons that points tend to be far away from the center of the distribution and on the edge of highdimensional space. Contrary to this, is that projected data tends to clump at the center. This gives a sense that any structure near the center of the projection is obscured, whether this is true or not. A transformation to reverse the curse, is defined in this paper, which uses radial transformations on the projected data. It is integrated seamlessly into the grand tour algorithm, and we have called it a burning sage tour, to indicate that it reverses the curse. The work is implemented into the tourr package in R. Several case studies are included that show how the sage visualizations enhance exploratory clustering and classification problems.
Keywords: data visualisation; grand tour; statistical computing; statistical graphics; multivariate data; dynamic graphics; data science; machine learning (search for similar items in EconPapers)
Pages: 19
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.monash.edu/business/ebs/research/publications/ebs/wp36-2020.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2020-36
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().