EconPapers    
Economics at your fingertips  
 

Future warming from global food consumption

Catherine C. Ivanovich (), Tianyi Sun, Doria R. Gordon and Ilissa B. Ocko
Additional contact information
Catherine C. Ivanovich: Columbia University
Tianyi Sun: Environmental Defense Fund
Doria R. Gordon: Environmental Defense Fund
Ilissa B. Ocko: Environmental Defense Fund

Nature Climate Change, 2023, vol. 13, issue 3, 297-302

Abstract: Abstract Food consumption is a major source of greenhouse gas (GHG) emissions, and evaluating its future warming impact is crucial for guiding climate mitigation action. However, the lack of granularity in reporting food item emissions and the widespread use of oversimplified metrics such as CO2 equivalents have complicated interpretation. We resolve these challenges by developing a global food consumption GHG emissions inventory separated by individual gas species and employing a reduced-complexity climate model, evaluating the associated future warming contribution and potential benefits from certain mitigation measures. We find that global food consumption alone could add nearly 1 °C to warming by 2100. Seventy five percent of this warming is driven by foods that are high sources of methane (ruminant meat, dairy and rice). However, over 55% of anticipated warming can be avoided from simultaneous improvements to production practices, the universal adoption of a healthy diet and consumer- and retail-level food waste reductions.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41558-023-01605-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:13:y:2023:i:3:d:10.1038_s41558-023-01605-8

Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/

DOI: 10.1038/s41558-023-01605-8

Access Statistics for this article

Nature Climate Change is currently edited by Bronwyn Wake

More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcli:v:13:y:2023:i:3:d:10.1038_s41558-023-01605-8