EconPapers    
Economics at your fingertips  
 

Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells

Essa A. Alharbi, Ahmed Y. Alyamani, Dominik J. Kubicki, Alexander R. Uhl, Brennan J. Walder, Anwar Q. Alanazi, Jingshan Luo, Andrés Burgos-Caminal, Abdulrahman Albadri, Hamad Albrithen, Mohammad Hayal Alotaibi, Jacques-E. Moser, Shaik M. Zakeeruddin, Fabrizio Giordano (), Lyndon Emsley () and Michael Grätzel ()
Additional contact information
Essa A. Alharbi: Ecole Polytechnique Fédérale de Lausanne
Ahmed Y. Alyamani: King Abdulaziz City for Science and Technology
Dominik J. Kubicki: Ecole Polytechnique Fédérale de Lausanne
Alexander R. Uhl: Ecole Polytechnique Fédérale de Lausanne
Brennan J. Walder: Ecole Polytechnique Fédérale de Lausanne
Anwar Q. Alanazi: Ecole Polytechnique Fédérale de Lausanne
Jingshan Luo: Ecole Polytechnique Fédérale de Lausanne
Andrés Burgos-Caminal: École polytechnique fédérale de Lausanne
Abdulrahman Albadri: King Abdulaziz City for Science and Technology
Hamad Albrithen: King Abdulaziz City for Science and Technology
Mohammad Hayal Alotaibi: King Abdulaziz City for Science and Technology
Jacques-E. Moser: École polytechnique fédérale de Lausanne
Shaik M. Zakeeruddin: Ecole Polytechnique Fédérale de Lausanne
Fabrizio Giordano: Ecole Polytechnique Fédérale de Lausanne
Lyndon Emsley: Ecole Polytechnique Fédérale de Lausanne
Michael Grätzel: Ecole Polytechnique Fédérale de Lausanne

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract The high conversion efficiency has made metal halide perovskite solar cells a real breakthrough in thin film photovoltaic technology in recent years. Here, we introduce a straightforward strategy to reduce the level of electronic defects present at the interface between the perovskite film and the hole transport layer by treating the perovskite surface with different types of ammonium salts, namely ethylammonium, imidazolium and guanidinium iodide. We use a triple cation perovskite formulation containing primarily formamidinium and small amounts of cesium and methylammonium. We find that this treatment boosts the power conversion efficiency from 20.5% for the control to 22.3%, 22.1%, and 21.0% for the devices treated with ethylammonium, imidazolium and guanidinium iodide, respectively. Best performing devices showed a loss in efficiency of only 5% under full sunlight intensity with maximum power tracking for 550 h. We apply 2D- solid-state NMR to unravel the atomic-level mechanism of this passivation effect.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10985-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10985-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10985-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10985-5