EconPapers    
Economics at your fingertips  
 

A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins

Tao Liang, Shabnam B. Goudari and Changle Chen ()
Additional contact information
Tao Liang: University of Science and Technology of China
Shabnam B. Goudari: University of Science and Technology of China
Changle Chen: University of Science and Technology of China

Nature Communications, 2020, vol. 11, issue 1, 1-8

Abstract: Abstract The development of high-performance transition metal catalysts has long been a major driving force in academic and industrial polyolefin research. Late transition metal-based olefin polymerization catalysts possess many unique properties, such as the ability to generate variously branched polyolefins using only ethylene as the feedstock and the capability of incorporating polar functionalized comonomers without protecting agents. Here we report the synthesis and (co)polymerization studies of a simple but extremely versatile α-imino-ketone nickel system. This type of catalyst is easy to synthesize and modify, and it is thermally stable and highly active during ethylene polymerization without the addition of any cocatalysts. Despite the sterically open nature, these catalysts can generate branched Ultra-High-Molecular-Weight polyethylene and copolymerize ethylene with a series of polar comonomers. The versatility of this platform has been further demonstrated through the synthesis of a dinuclear nickel catalyst and the installation of an anchor for catalyst heterogenization.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-14211-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14211-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-14211-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14211-0