Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2
Quirin Stahl,
Maximilian Kusch,
Florian Heinsch,
Gaston Garbarino,
Norman Kretzschmar,
Kerstin Hanff,
Kai Rossnagel,
Jochen Geck and
Tobias Ritschel ()
Additional contact information
Quirin Stahl: Institut für Festkörper- und Materialphysik, Technische Universität Dresden
Maximilian Kusch: Institut für Festkörper- und Materialphysik, Technische Universität Dresden
Florian Heinsch: Institut für Festkörper- und Materialphysik, Technische Universität Dresden
Gaston Garbarino: ESRF, The European Synchrotron
Norman Kretzschmar: ESRF, The European Synchrotron
Kerstin Hanff: Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel
Kai Rossnagel: Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel
Jochen Geck: Institut für Festkörper- und Materialphysik, Technische Universität Dresden
Tobias Ritschel: Institut für Festkörper- und Materialphysik, Technische Universität Dresden
Nature Communications, 2020, vol. 11, issue 1, 1-7
Abstract:
Abstract Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-15079-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15079-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-15079-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().