EconPapers    
Economics at your fingertips  
 

Microscopic origins of performance losses in highly efficient Cu(In,Ga)Se2 thin-film solar cells

Maximilian Krause, Aleksandra Nikolaeva, Matthias Maiberg, Philip Jackson, Dimitrios Hariskos, Wolfram Witte, José A. Márquez, Sergej Levcenko, Thomas Unold, Roland Scheer and Daniel Abou-Ras ()
Additional contact information
Maximilian Krause: Helmholtz-Zentrum Berlin
Aleksandra Nikolaeva: Helmholtz-Zentrum Berlin
Matthias Maiberg: Martin-Luther University Halle-Wittenberg
Philip Jackson: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
Dimitrios Hariskos: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
Wolfram Witte: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
José A. Márquez: Helmholtz-Zentrum Berlin
Sergej Levcenko: Helmholtz-Zentrum Berlin
Thomas Unold: Helmholtz-Zentrum Berlin
Roland Scheer: Martin-Luther University Halle-Wittenberg
Daniel Abou-Ras: Helmholtz-Zentrum Berlin

Nature Communications, 2020, vol. 11, issue 1, 1-10

Abstract: Abstract Thin-film solar cells based on polycrystalline absorbers have reached very high conversion efficiencies of up to 23-25%. In order to elucidate the limiting factors that need to be overcome for even higher efficiency levels, it is essential to investigate microscopic origins of loss mechanisms in these devices. In the present work, a high efficiency (21% without anti-reflection coating) copper indium gallium diselenide (CIGSe) solar cell is characterized by means of a correlative microscopy approach and corroborated by means of photoluminescence spectroscopy. The values obtained by the experimental characterization are used as input parameters for two-dimensional device simulations, for which a real microstructure was used. It can be shown that electrostatic potential and lifetime fluctuations exhibit no substantial impact on the device performance. In contrast, nonradiative recombination at random grain boundaries can be identified as a significant loss mechanism for CIGSe solar cells, even for devices at a very high performance level.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-17507-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17507-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-17507-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17507-8