Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
Yifan Dong,
Vasileios C. Nikolis,
Felix Talnack,
Yi-Chun Chin,
Johannes Benduhn,
Giacomo Londi,
Jonas Kublitski,
Xijia Zheng,
Stefan C. B. Mannsfeld,
Donato Spoltore,
Luca Muccioli,
Jing Li,
Xavier Blase,
David Beljonne,
Ji-Seon Kim (),
Artem A. Bakulin,
Gabriele D’Avino (),
James R. Durrant () and
Koen Vandewal ()
Additional contact information
Yifan Dong: Imperial College London
Vasileios C. Nikolis: Technische Universität Dresden
Felix Talnack: Technische Universität Dresden
Yi-Chun Chin: Imperial College London
Johannes Benduhn: Technische Universität Dresden
Giacomo Londi: University of Mons
Jonas Kublitski: Technische Universität Dresden
Xijia Zheng: Imperial College London
Stefan C. B. Mannsfeld: Technische Universität Dresden
Donato Spoltore: Technische Universität Dresden
Luca Muccioli: University of Bologna
Jing Li: CNRS, Grenoble INP, Institut Néel
Xavier Blase: CNRS, Grenoble INP, Institut Néel
David Beljonne: University of Mons
Ji-Seon Kim: Imperial College London
Artem A. Bakulin: Imperial College London
Gabriele D’Avino: CNRS, Grenoble INP, Institut Néel
James R. Durrant: Imperial College London
Koen Vandewal: Hasselt University
Nature Communications, 2020, vol. 11, issue 1, 1-9
Abstract:
Abstract Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41467-020-18439-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18439-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-18439-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().