Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy
Ralph Götz,
Tobias C. Kunz,
Julian Fink,
Franziska Solger,
Jan Schlegel,
Jürgen Seibel,
Vera Kozjak-Pavlovic,
Thomas Rudel () and
Markus Sauer ()
Additional contact information
Ralph Götz: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Tobias C. Kunz: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Julian Fink: Julius-Maximilians-Universität Würzburg, Am Hubland
Franziska Solger: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Jan Schlegel: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Jürgen Seibel: Julius-Maximilians-Universität Würzburg, Am Hubland
Vera Kozjak-Pavlovic: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Thomas Rudel: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Markus Sauer: Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland
Nature Communications, 2020, vol. 11, issue 1, 1-9
Abstract:
Abstract Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4× to 10× expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10–20 nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 ± 7.7 nm.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-020-19897-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19897-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-020-19897-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().