EconPapers    
Economics at your fingertips  
 

Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids

Andreas Weilhard, Stephen P. Argent and Victor Sans ()
Additional contact information
Andreas Weilhard: University of Nottingham
Stephen P. Argent: University of Nottingham
Victor Sans: University of Nottingham

Nature Communications, 2021, vol. 12, issue 1, 1-7

Abstract: Abstract The efficient transformation of CO2 into chemicals and fuels is a key challenge for the decarbonisation of the synthetic production chain. Formic acid (FA) represents the first product of CO2 hydrogenation and can be a precursor of higher added value products or employed as a hydrogen storage vector. Bases are typically required to overcome thermodynamic barriers in the synthesis of FA, generating waste and requiring post-processing of the formate salts. The employment of buffers can overcome these limitations, but their catalytic performance has so far been modest. Here, we present a methodology utilising IL as buffers to catalytically transform CO2 into FA with very high efficiency and comparable performance to the base-assisted systems. The combination of multifunctional basic ionic liquids and catalyst design enables the synthesis of FA with very high catalytic efficiency in TONs of >8*105 and TOFs > 2.1*104 h−1.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-020-20291-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20291-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-020-20291-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20291-0