Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules
Julia Villalva,
Aysegul Develioglu,
Nicolas Montenegro-Pohlhammer,
Rocío Sánchez- de-Armas,
Arturo Gamonal,
Eduardo Rial,
Mar García-Hernández,
Luisa Ruiz-Gonzalez,
José Sánchez Costa (),
Carmen J. Calzado (),
Emilio M. Pérez () and
Enrique Burzurí ()
Additional contact information
Julia Villalva: IMDEA Nanociencia, Campus de Cantoblanco
Aysegul Develioglu: IMDEA Nanociencia, Campus de Cantoblanco
Nicolas Montenegro-Pohlhammer: Departamento de Química Física, Universidad de Sevilla
Rocío Sánchez- de-Armas: Departamento de Química Física, Universidad de Sevilla
Arturo Gamonal: IMDEA Nanociencia, Campus de Cantoblanco
Eduardo Rial: IMDEA Nanociencia, Campus de Cantoblanco
Mar García-Hernández: Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC)
Luisa Ruiz-Gonzalez: Departamento de Quimica Inorgánica, Universidad Complutense de Madrid
José Sánchez Costa: IMDEA Nanociencia, Campus de Cantoblanco
Carmen J. Calzado: Departamento de Química Física, Universidad de Sevilla
Emilio M. Pérez: IMDEA Nanociencia, Campus de Cantoblanco
Enrique Burzurí: IMDEA Nanociencia, Campus de Cantoblanco
Nature Communications, 2021, vol. 12, issue 1, 1-8
Abstract:
Abstract Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-21791-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21791-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-21791-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().