EconPapers    
Economics at your fingertips  
 

Synchronization of gene expression across eukaryotic communities through chemical rhythms

Sara Pérez-García, Mario García-Navarrete, Diego Ruiz-Sanchis, Cristina Prieto-Navarro, Merisa Avdovic, Ornella Pucciariello and Krzysztof Wabnik ()
Additional contact information
Sara Pérez-García: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Mario García-Navarrete: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Diego Ruiz-Sanchis: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Cristina Prieto-Navarro: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Merisa Avdovic: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Ornella Pucciariello: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)
Krzysztof Wabnik: Centro de Biotecnologıa y Genomica de Plantas (Universidad Politecnica de Madrid—Instituto Nacional de Investigacion y Tecnologıa Agraria y Alimentaria)

Nature Communications, 2021, vol. 12, issue 1, 1-10

Abstract: Abstract The synchronization is a recurring phenomenon in neuroscience, ecology, human sciences, and biology. However, controlling synchronization in complex eukaryotic consortia on extended spatial-temporal scales remains a major challenge. Here, to address this issue we construct a minimal synthetic system that directly converts chemical signals into a coherent gene expression synchronized among eukaryotic communities through rate-dependent hysteresis. Guided by chemical rhythms, isolated colonies of yeast Saccharomyces cerevisiae oscillate in near-perfect synchrony despite the absence of intercellular coupling or intrinsic oscillations. Increased speed of chemical rhythms and incorporation of feedback in the system architecture can tune synchronization and precision of the cell responses in a growing cell collectives. This synchronization mechanism remain robust under stress in the two-strain consortia composed of toxin-sensitive and toxin-producing strains. The sensitive cells can maintain the spatial-temporal synchronization for extended periods under the rhythmic toxin dosages produced by killer cells. Our study provides a simple molecular framework for generating global coordination of eukaryotic gene expression through dynamic environment.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-021-24325-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24325-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-24325-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24325-z