A synthetic tubular molecular transport system
Pierre Stömmer,
Henrik Kiefer,
Enzo Kopperger,
Maximilian N. Honemann,
Massimo Kube,
Friedrich C. Simmel,
Roland R. Netz and
Hendrik Dietz ()
Additional contact information
Pierre Stömmer: Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München
Henrik Kiefer: Fachbereich Physik, Freie Universität Berlin
Enzo Kopperger: Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München
Maximilian N. Honemann: Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München
Massimo Kube: Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München
Friedrich C. Simmel: Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München
Roland R. Netz: Fachbereich Physik, Freie Universität Berlin
Hendrik Dietz: Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München
Nature Communications, 2021, vol. 12, issue 1, 1-10
Abstract:
Abstract Creating artificial macromolecular transport systems that can support the movement of molecules along defined routes is a key goal of nanotechnology. Here, we report the bottom-up construction of a macromolecular transport system in which molecular pistons diffusively move through micrometer-long, hollow filaments. The pistons can cover micrometer distances in fractions of seconds. We build the system using multi-layer DNA origami and analyze the structures of the components using transmission electron microscopy. We study the motion of the pistons along the tubes using single-molecule fluorescence microscopy and perform Langevin simulations to reveal details of the free energy surface that directs the motions of the pistons. The tubular transport system achieves diffusivities and displacement ranges known from natural molecular motors and realizes mobility improvements over five orders of magnitude compared to previous artificial random walker designs. Electric fields can also be employed to actively pull the pistons along the filaments, thereby realizing a nanoscale electric rail system. Our system presents a platform for artificial motors that move autonomously driven by chemical fuels and for performing nanotribology studies, and it could form a basis for future molecular transportation networks.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-021-24675-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24675-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-021-24675-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().