EconPapers    
Economics at your fingertips  
 

How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction

Xiaoting Chen, Laura P. Granda-Marulanda, Ian T. McCrum and Marc T. M. Koper ()
Additional contact information
Xiaoting Chen: Leiden University
Laura P. Granda-Marulanda: Leiden University
Ian T. McCrum: Leiden University
Marc T. M. Koper: Leiden University

Nature Communications, 2022, vol. 13, issue 1, 1-11

Abstract: Abstract Development of reversible and stable catalysts for the electrochemical reduction of CO2 is of great interest. Here, we elucidate the atomistic details of how a palladium electrocatalyst inhibits CO poisoning during both formic acid oxidation to carbon dioxide and carbon dioxide reduction to formic acid. We compare results obtained with a platinum single-crystal electrode modified with and without a single monolayer of palladium. We combine (high-scan-rate) cyclic voltammetry with density functional theory to explain the absence of CO poisoning on the palladium-modified electrode. We show how the high formate coverage on the palladium-modified electrode protects the surface from poisoning during formic acid oxidation, and how the adsorption of CO precursor dictates the delayed poisoning during CO2 reduction. The nature of the hydrogen adsorbed on the palladium-modified electrode is considerably different from platinum, supporting a model to explain the reversibility of this reaction. Our results help in designing catalysts for which CO poisoning needs to be avoided.

Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-021-27793-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27793-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-021-27793-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27793-5