Wafer-scale epitaxial modulation of quantum dot density
N. Bart,
C. Dangel,
P. Zajac,
N. Spitzer,
J. Ritzmann,
M. Schmidt,
H. G. Babin,
R. Schott,
S. R. Valentin,
S. Scholz,
Y. Wang,
R. Uppu,
D. Najer,
M. C. Löbl,
N. Tomm,
A. Javadi,
N. O. Antoniadis,
L. Midolo,
K. Müller,
R. J. Warburton,
P. Lodahl,
A. D. Wieck,
J. J. Finley and
A. Ludwig ()
Additional contact information
N. Bart: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
C. Dangel: Technische Universität München
P. Zajac: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
N. Spitzer: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
J. Ritzmann: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
M. Schmidt: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
H. G. Babin: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
R. Schott: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
S. R. Valentin: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
S. Scholz: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
Y. Wang: University of Copenhagen
R. Uppu: University of Copenhagen
D. Najer: University of Basel
M. C. Löbl: University of Basel
N. Tomm: University of Basel
A. Javadi: University of Basel
N. O. Antoniadis: University of Basel
L. Midolo: University of Copenhagen
K. Müller: Munich Center for Quantum Science and Technology (MCQST)
R. J. Warburton: University of Basel
P. Lodahl: University of Copenhagen
A. D. Wieck: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
J. J. Finley: Technische Universität München
A. Ludwig: Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik
Nature Communications, 2022, vol. 13, issue 1, 1-7
Abstract:
Abstract Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/µm2 and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-29116-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29116-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-29116-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().