EconPapers    
Economics at your fingertips  
 

The nonequilibrium cost of accurate information processing

Giulio Chiribella (), Fei Meng, Renato Renner and Man-Hong Yung
Additional contact information
Giulio Chiribella: The University of Hong Kong
Fei Meng: The University of Hong Kong
Renato Renner: Institute for Theoretical Physics, ETH Zürich
Man-Hong Yung: Southern University of Science and Technology

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract Accurate information processing is crucial both in technology and in nature. To achieve it, any information processing system needs an initial supply of resources away from thermal equilibrium. Here we establish a fundamental limit on the accuracy achievable with a given amount of nonequilibrium resources. The limit applies to arbitrary information processing tasks and arbitrary information processing systems subject to the laws of quantum mechanics. It is easily computable and is expressed in terms of an entropic quantity, which we name the reverse entropy, associated to a time reversal of the information processing task under consideration. The limit is achievable for all deterministic classical computations and for all their quantum extensions. As an application, we establish the optimal tradeoff between nonequilibrium and accuracy for the fundamental tasks of storing, transmitting, cloning, and erasing information. Our results set a target for the design of new devices approaching the ultimate efficiency limit, and provide a framework for demonstrating thermodynamical advantages of quantum devices over their classical counterparts.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34541-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34541-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34541-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34541-w