EconPapers    
Economics at your fingertips  
 

Splay-bend nematic phases of bent colloidal silica rods induced by polydispersity

Ramakrishna Kotni, Albert Grau-Carbonell, Massimiliano Chiappini, Marjolein Dijkstra () and Alfons Blaaderen ()
Additional contact information
Ramakrishna Kotni: Utrecht University
Albert Grau-Carbonell: Utrecht University
Massimiliano Chiappini: Utrecht University
Marjolein Dijkstra: Utrecht University
Alfons Blaaderen: Utrecht University

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Liquid crystal (LC) phases are in between solids and liquids with properties of both. Nematic LCs composed of rod-like molecules or particles exhibit long-range orientational order, yielding characteristic birefringence, but they lack positional order, allowing them to flow like a liquid. This combination of properties as well as their sensitivity to external fields make nematic LCs fundamental for optical applications e.g. liquid crystal displays (LCDs). When rod-like particles become bent, spontaneous bend deformations arise in the LC, leading to geometric frustration which can be resolved by complementary twist or splay deformations forming intriguing twist-bend (NTB) and splay-bend (NSB) nematic phases. Here, we show experimentally that the elusive NSB phases can be stabilized in systems of polydisperse micron-sized bent silica rods. Our results open avenues for the realization of NTB and NSB phases of colloidal and molecular LCs.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-34658-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34658-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-34658-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34658-y