EconPapers    
Economics at your fingertips  
 

Topological photonics: robustness and beyond

Alexander B. Khanikaev () and Andrea Alù ()
Additional contact information
Alexander B. Khanikaev: The City College of New York (USA)
Andrea Alù: The City College of New York (USA)

Nature Communications, 2024, vol. 15, issue 1, 1-3

Abstract: Synthetic optical materials have been recently employed as a powerful platform for the emulation of topological phenomena in wave physics. Topological phases offer exciting opportunities, not only for fundamental physics demonstrations, but also for practical technologies. Yet, their impact has so far been primarily limited to their claimed enhanced robustness. Here, we clarify the role of robustness in topological photonic systems, and we discuss how topological photonics may offer a wider range of important opportunities in science and for practical technologies, discussing emergent and exciting research directions.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-45194-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45194-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-45194-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45194-2