Ultrabroadband high-resolution silicon RF-photonic beamformer
Pablo Martinez-Carrasco,
Tan Huy Ho,
David Wessel and
José Capmany ()
Additional contact information
Pablo Martinez-Carrasco: Universitat Politècnica de València
Tan Huy Ho: Huawei Technologies Canada Co., Ltd
David Wessel: Huawei Technologies Canada Co., Ltd
José Capmany: Universitat Politècnica de València
Nature Communications, 2024, vol. 15, issue 1, 1-9
Abstract:
Abstract Microwave photonics aims to overcome the limitations of radiofrequency devices and systems by leveraging the unique properties of optics in terms of low loss and power consumption, broadband operation, immunity to interference and tunability. This enables versatile functions like beam steering, crucial in emerging applications such as the Internet of Things (IoT) and 5/6G networks. The main problem with current photonic beamforming architectures is that there is a tradeoff between resolution and bandwidth, which has not yet been solved. Here we propose and experimentally demonstrate a novel switched optical delay line beamformer architecture that is capable of achieving the desired maximum resolution (i.e., 2M pointing angles for M-bit coding) and provides broadband operation simultaneously. The concept is demonstrated by means of a compact (8 × 3 mm2) 8 (5-bit) delay line Silicon Photonic chip implementation capable of addressing 32 pointing angles and offering 20 GHz bandwidth operation.
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-45743-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45743-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-45743-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().