EconPapers    
Economics at your fingertips  
 

Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species

Patrik Nosil, Zachariah Gompert and Daniel J. Funk ()
Additional contact information
Patrik Nosil: CEFE, Univ Montpellier, CNRS, EPHE, IRD
Zachariah Gompert: Utah State University
Daniel J. Funk: Vanderbilt University

Nature Communications, 2024, vol. 15, issue 1, 1-15

Abstract: Abstract Speciation is often viewed as a continuum along which populations diverge until they become reproductively-isolated species. However, such divergence may be heterogeneous, proceeding in fits and bursts, rather than being uniform and gradual. We show in Timema stick insects that one component of reproductive isolation evolves non-uniformly across this continuum, whereas another does not. Specifically, we use thousands of host-preference and mating trials to study habitat and sexual isolation among 42 pairs of taxa spanning a range of genomic differentiation and divergence time. We find that habitat isolation is uncoupled from genomic differentiation within species, but accumulates linearly with it between species. In contrast, sexual isolation accumulates linearly across the speciation continuum, and thus exhibits similar dynamics to morphological traits not implicated in reproductive isolation. The results show different evolutionary dynamics for different components of reproductive isolation and highlight a special relevance for species status in the process of speciation.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-46294-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46294-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-46294-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46294-9