Dynamically stable radiation pressure propulsion of flexible lightsails for interstellar exploration
Ramon Gao,
Michael D. Kelzenberg and
Harry A. Atwater ()
Additional contact information
Ramon Gao: California Institute of Technology
Michael D. Kelzenberg: California Institute of Technology
Harry A. Atwater: California Institute of Technology
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract Meter-scale, submicron-thick lightsail spacecraft, propelled to relativistic velocities via photon pressure using high-power density laser radiation, offer a potentially new route to space exploration within and beyond the solar system, posing substantial challenges for materials science and engineering. We analyze the structural and photonic design of flexible lightsails by developing a mesh-based multiphysics simulator based on linear elastic theory. We observe spin-stabilized flexible lightsail shapes and designs that are immune to shape collapse during acceleration and exhibit beam-riding stability despite deformations caused by photon pressure and thermal expansion. Excitingly, nanophotonic lightsails based on planar silicon nitride membranes patterned with suitable optical metagratings exhibit both mechanically and dynamically stable propulsion along the pump laser axis. These advances suggest that laser-driven acceleration of membrane-like lightsails to the relativistic speeds needed to access interstellar distances is conceptually feasible, and that their fabrication could be achieved by scaling up modern microfabrication technology.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47476-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47476-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47476-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().