Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin
Lei Zhang,
Lu Chen,
Siheng Wang,
Shanshan Wang,
Dan Wang,
Le Yu,
Xu Xu,
He Liu () and
Chaoji Chen ()
Additional contact information
Lei Zhang: Chinese Academy of Forestry
Lu Chen: Wuhan University
Siheng Wang: Chinese Academy of Forestry
Shanshan Wang: Nanjing Forestry University
Dan Wang: Chinese Academy of Forestry
Le Yu: Wuhan University
Xu Xu: Nanjing Forestry University
He Liu: Chinese Academy of Forestry
Chaoji Chen: Wuhan University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Self-powered skin attachable and detachable electronics are under intense development to enable the internet of everything and everyone in new and useful ways. Existing on-demand separation strategies rely on complicated pretreatments and physical properties of the adherends, achieving detachable-on-demand in a facile, rapid, and universal way remains challenging. To overcome this challenge, an ingenious cellulose nanofiber-mediated manifold dynamic synergy strategy is developed to construct a supramolecular hydrogel with both reversible tough adhesion and easy photodetachment. The cellulose nanofiber-reinforced network and the coordination between Fe ions and polymer chains endow the dynamic reconfiguration of supramolecular networks and the adhesion behavior of the hydrogel. This strategy enables the simple and rapid fabrication of strong yet reversible hydrogels with tunable toughness ((Valuemax-Valuemin)/Valuemax of up to 86%), on-demand adhesion energy ((Valuemax-Valuemin)/Valuemax of up to 93%), and stable conductivity up to 12 mS cm−1. We further extend this strategy to fabricate different cellulose nanofiber/Fe3+-based hydrogels from various biomacromolecules and petroleum polymers, and shed light on exploration of fundamental dynamic supramolecular network reconfiguration. Simultaneously, we prepare an adhesive-detachable triboelectric nanogenerator as a human-machine interface for a self-powered wireless monitoring system based on this strategy, which can acquire the real-time, self-powered monitoring, and wireless whole-body movement signal, opening up possibilities for diversifying potential applications in electronic skins and intelligent devices.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-47986-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47986-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-47986-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().