Multipolar condensates and multipolar Josephson effects
Wenhui Xu,
Chenwei Lv and
Qi Zhou ()
Additional contact information
Wenhui Xu: Purdue University
Chenwei Lv: Purdue University
Qi Zhou: Purdue University
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract When single-particle dynamics are suppressed in certain strongly correlated systems, dipoles arise as elementary carriers of quantum kinetics. These dipoles can further condense, providing physicists with a rich realm to study fracton phases of matter. Whereas recent theoretical discoveries have shown that an unconventional lattice model may host a dipole condensate as the ground state, we show that dipole condensates prevail in bosonic systems due to a self-proximity effect. Our findings allow experimentalists to manipulate the phase of a dipole condensate and deliver dipolar Josephson effects, where supercurrents of dipoles arise in the absence of particle flows. The self-proximity effects can also be utilized to produce a generic multipolar condensate. The kinetics of the n-th order multipoles unavoidably creates a condensate of the (n + 1)-th order multipoles, forming a hierarchy of multipolar condensates that will offer physicists a whole new class of macroscopic quantum phenomena.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-48907-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48907-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-48907-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().