Comparing costs and climate impacts of various electric vehicle charging systems across the United States
Noah Horesh,
David A. Trinko and
Jason C. Quinn ()
Additional contact information
Noah Horesh: Colorado State University
David A. Trinko: Colorado State University
Jason C. Quinn: Colorado State University
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract The seamless adoption of electric vehicles (EVs) in the United States necessitates the development of extensive and effective charging infrastructure. Various charging systems have been proposed, including Direct Current Fast Charging, Battery Swapping, and Dynamic Wireless Power Transfer. While many studies have evaluated the charging costs and greenhouse gas (GHG) intensity of EVs, a comprehensive analysis comparing these systems and their implications across vehicle categories remains unexplored. This study compares the total cost of ownership (TCO) and GHG-intensity of EVs using these charging systems. Based on nationwide infrastructure deployment simulations, the change to TCO from adopting EVs varies by scenario, vehicle category, and location, with local fuel prices, electricity prices, and traffic volumes dramatically impacting results. Further, EV GHG-intensity depends on local electricity mixes and infrastructure utilizations. This research highlights the responsiveness of EV benefits resulting from technology advancements, deployment decisions, and policymaking.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49157-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49157-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49157-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().