Reservoir-computing based associative memory and itinerancy for complex dynamical attractors
Ling-Wei Kong,
Gene A. Brewer and
Ying-Cheng Lai ()
Additional contact information
Ling-Wei Kong: Cornell University
Gene A. Brewer: Arizona State University
Ying-Cheng Lai: Arizona State University
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Traditional neural network models of associative memories were used to store and retrieve static patterns. We develop reservoir-computing based memories for complex dynamical attractors, under two common recalling scenarios in neuropsychology: location-addressable with an index channel and content-addressable without such a channel. We demonstrate that, for location-addressable retrieval, a single reservoir computing machine can memorize a large number of periodic and chaotic attractors, each retrievable with a specific index value. We articulate control strategies to achieve successful switching among the attractors, unveil the mechanism behind failed switching, and uncover various scaling behaviors between the number of stored attractors and the reservoir network size. For content-addressable retrieval, we exploit multistability with cue signals, where the stored attractors coexist in the high-dimensional phase space of the reservoir network. As the length of the cue signal increases through a critical value, a high success rate can be achieved. The work provides foundational insights into developing long-term memories and itinerancy for complex dynamical patterns.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49190-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49190-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49190-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().