De novo atomic protein structure modeling for cryoEM density maps using 3D transformer and HMM
Nabin Giri and
Jianlin Cheng ()
Additional contact information
Nabin Giri: University of Missouri
Jianlin Cheng: University of Missouri
Nature Communications, 2024, vol. 15, issue 1, 1-13
Abstract:
Abstract Accurately building 3D atomic structures from cryo-EM density maps is a crucial step in cryo-EM-based protein structure determination. Converting density maps into 3D atomic structures for proteins lacking accurate homologous or predicted structures as templates remains a significant challenge. Here, we introduce Cryo2Struct, a fully automated de novo cryo-EM structure modeling method. Cryo2Struct utilizes a 3D transformer to identify atoms and amino acid types in cryo-EM density maps, followed by an innovative Hidden Markov Model (HMM) to connect predicted atoms and build protein backbone structures. Cryo2Struct produces substantially more accurate and complete protein structural models than the widely used ab initio method Phenix. Additionally, its performance in building atomic structural models is robust against changes in the resolution of density maps and the size of protein structures.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49647-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49647-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49647-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().