Magnon interactions in a moderately correlated Mott insulator
Qisi Wang (),
S. Mustafi,
E. Fogh,
N. Astrakhantsev,
Z. He,
I. Biało,
Ying Chan,
L. Martinelli,
M. Horio,
O. Ivashko,
N. E. Shaik,
K. von Arx,
Y. Sassa,
E. Paris,
M. H. Fischer,
Y. Tseng,
N. B. Christensen,
A. Galdi,
D. G. Schlom,
K. M. Shen,
T. Schmitt,
H. M. Rønnow and
J. Chang ()
Additional contact information
Qisi Wang: The Chinese University of Hong Kong
S. Mustafi: Universität Zürich
E. Fogh: École Polytechnique Fedérale de Lausanne (EPFL)
N. Astrakhantsev: Universität Zürich
Z. He: Chinese Academy of Sciences (CAS)
I. Biało: Universität Zürich
Ying Chan: The Chinese University of Hong Kong
L. Martinelli: Universität Zürich
M. Horio: Universität Zürich
O. Ivashko: Universität Zürich
N. E. Shaik: École Polytechnique Fedérale de Lausanne (EPFL)
K. von Arx: Universität Zürich
Y. Sassa: KTH Royal Institute of Technology
E. Paris: Paul Scherrer Institut
M. H. Fischer: Universität Zürich
Y. Tseng: Paul Scherrer Institut
N. B. Christensen: Technical University of Denmark
A. Galdi: Universita’ degli Studi di Salerno
D. G. Schlom: Cornell University
K. M. Shen: Kavli Institute at Cornell for Nanoscale Science
T. Schmitt: Paul Scherrer Institut
H. M. Rønnow: École Polytechnique Fedérale de Lausanne (EPFL)
J. Chang: Universität Zürich
Nature Communications, 2024, vol. 15, issue 1, 1-7
Abstract:
Abstract Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La2CuO4 indicate that quantum fluctuations are much stronger in SrCuO2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic Néel order as the ground state. Our results indicate that SrCuO2—due to strong quantum fluctuations—is a unique starting point for the exploration of novel magnetic ground states.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-49714-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49714-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-49714-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().