EconPapers    
Economics at your fingertips  
 

Molecular motor tug-of-war regulates elongasome cell wall synthesis dynamics in Bacillus subtilis

Stuart Middlemiss (), Matthieu Blandenet, David M. Roberts, Andrew McMahon, James Grimshaw, Joshua M. Edwards, Zikai Sun, Kevin D. Whitley, Thierry Blu, Henrik Strahl () and Séamus Holden ()
Additional contact information
Stuart Middlemiss: Newcastle University
Matthieu Blandenet: Newcastle University
David M. Roberts: University of Warwick
Andrew McMahon: University of Warwick
James Grimshaw: Newcastle University
Joshua M. Edwards: Newcastle University
Zikai Sun: The Chinese University of Hong Kong
Kevin D. Whitley: Newcastle University
Thierry Blu: The Chinese University of Hong Kong
Henrik Strahl: Newcastle University
Séamus Holden: Newcastle University

Nature Communications, 2024, vol. 15, issue 1, 1-13

Abstract: Abstract Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-49785-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49785-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-49785-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49785-x