Inverse mapping of quantum properties to structures for chemical space of small organic molecules
Alessio Fallani (),
Leonardo Medrano Sandonas () and
Alexandre Tkatchenko ()
Additional contact information
Alessio Fallani: University of Luxembourg
Leonardo Medrano Sandonas: University of Luxembourg
Alexandre Tkatchenko: University of Luxembourg
Nature Communications, 2024, vol. 15, issue 1, 1-14
Abstract:
Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50401-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50401-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50401-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().