Evaluating batch correction methods for image-based cell profiling
John Arevalo,
Ellen Su,
Jessica D. Ewald,
Robert Dijk,
Anne E. Carpenter and
Shantanu Singh ()
Additional contact information
John Arevalo: Broad Institute of MIT and Harvard
Ellen Su: Broad Institute of MIT and Harvard
Jessica D. Ewald: Broad Institute of MIT and Harvard
Robert Dijk: Broad Institute of MIT and Harvard
Anne E. Carpenter: Broad Institute of MIT and Harvard
Shantanu Singh: Broad Institute of MIT and Harvard
Nature Communications, 2024, vol. 15, issue 1, 1-12
Abstract:
Abstract High-throughput image-based profiling platforms are powerful technologies capable of collecting data from billions of cells exposed to thousands of perturbations in a time- and cost-effective manner. Therefore, image-based profiling data has been increasingly used for diverse biological applications, such as predicting drug mechanism of action or gene function. However, batch effects severely limit community-wide efforts to integrate and interpret image-based profiling data collected across different laboratories and equipment. To address this problem, we benchmark ten high-performing single-cell RNA sequencing (scRNA-seq) batch correction techniques, representing diverse approaches, using a newly released Cell Painting dataset, JUMP. We focus on five scenarios with varying complexity, ranging from batches prepared in a single lab over time to batches imaged using different microscopes in multiple labs. We find that Harmony and Seurat RPCA are noteworthy, consistently ranking among the top three methods for all tested scenarios while maintaining computational efficiency. Our proposed framework, benchmark, and metrics can be used to assess new batch correction methods in the future. This work paves the way for improvements that enable the community to make the best use of public Cell Painting data for scientific discovery.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50613-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50613-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50613-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().