Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up
Morven Muilwijk (),
Tore Hattermann,
Torge Martin and
Mats A. Granskog
Additional contact information
Morven Muilwijk: Fram Centre
Tore Hattermann: Fram Centre
Torge Martin: GEOMAR Helmholtz Centre for Ocean Research
Mats A. Granskog: Fram Centre
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract Arctic sea ice mediates atmosphere-ocean momentum transfer, which drives upper ocean circulation. How Arctic Ocean surface stress and velocity respond to sea ice decline and changing winds under global warming is unclear. Here we show that state-of-the-art climate models consistently predict an increase in future (2015–2100) ocean surface stress in response to increased surface wind speed, declining sea ice area, and a weaker ice pack. While wind speeds increase most during fall (+2.2% per decade), surface stress rises most in winter (+5.1% per decade) being amplified by reduced internal ice stress. This is because, as sea ice concentration decreases in a warming climate, less energy is dissipated by the weaker ice pack, resulting in more momentum transfer to the ocean. The increased momentum transfer accelerates Arctic Ocean surface velocity (+31–47% by 2100), leading to elevated ocean kinetic energy and enhanced vertical mixing. The enhanced surface stress also increases the Beaufort Gyre Ekman convergence and freshwater content, impacting Arctic marine ecosystems and the downstream ocean circulation. The impacts of projected changes are profound, but different and simplified model formulations of atmosphere-ice-ocean momentum transfer introduce considerable uncertainty, highlighting the need for improved coupling in climate models.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-024-50874-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50874-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-50874-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().