Transcription-dependent mobility of single genes and genome-wide motions in live human cells
Fang-Yi Chu,
Alexis S. Clavijo,
Suho Lee and
Alexandra Zidovska ()
Additional contact information
Fang-Yi Chu: New York University
Alexis S. Clavijo: New York University
Suho Lee: New York University
Alexandra Zidovska: New York University
Nature Communications, 2024, vol. 15, issue 1, 1-15
Abstract:
Abstract The human genome is highly dynamic across all scales. At the gene level, chromatin is persistently remodeled and rearranged during active processes such as transcription, replication and DNA repair. At the genome level, chromatin moves in micron-scale domains that break up and re-form over seconds, but the origin of these coherent motions is unknown. Here, we investigate the connection between genomic motions and gene-level activity. Simultaneous mapping of single-gene and genome-wide motions shows that the coupling of gene transcriptional activity to flows of the nearby genome is modulated by chromatin compaction. A motion correlation analysis suggests that a single active gene drives larger-scale motions in low-compaction regions, but high-compaction chromatin drives gene motion regardless of its activity state. By revealing unexpected connections among gene activity, spatial heterogeneities of chromatin and its emergent genome-wide motions, these findings uncover aspects of the genome’s spatiotemporal organization that directly impact gene regulation and expression.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-024-51149-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51149-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-024-51149-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().