EconPapers    
Economics at your fingertips  
 

Parallel development of social behavior in biological and artificial fish

Joshua D. McGraw (), Donsuk Lee and Justin N. Wood ()
Additional contact information
Joshua D. McGraw: Indiana University Bloomington
Donsuk Lee: Indiana University Bloomington
Justin N. Wood: Indiana University Bloomington

Nature Communications, 2024, vol. 15, issue 1, 1-16

Abstract: Abstract Our algorithmic understanding of vision has been revolutionized by a reverse engineering paradigm that involves building artificial systems that perform the same tasks as biological systems. Here, we extend this paradigm to social behavior. We embodied artificial neural networks in artificial fish and raised the artificial fish in virtual fish tanks that mimicked the rearing conditions of biological fish. When artificial fish had deep reinforcement learning and curiosity-derived rewards, they spontaneously developed fish-like social behaviors, including collective behavior and social preferences (favoring in-group over out-group members). The artificial fish also developed social behavior in naturalistic ocean worlds, showing that these embodied models generalize to real-world learning contexts. Thus, animal-like social behaviors can develop from generic learning algorithms (reinforcement learning and intrinsic motivation). Our study provides a foundation for reverse-engineering the development of social behavior using image-computable models from artificial intelligence, bridging the divide between high-dimensional sensory inputs and collective action.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-52307-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52307-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-52307-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52307-4