EconPapers    
Economics at your fingertips  
 

Parity-independent Kondo effect of correlated electrons in electrostatically defined ZnO quantum dots

Kosuke Noro, Yusuke Kozuka, Kazuma Matsumura, Takeshi Kumasaka, Yoshihiro Fujiwara, Atsushi Tsukazaki, Masashi Kawasaki and Tomohiro Otsuka ()
Additional contact information
Kosuke Noro: Tohoku University
Yusuke Kozuka: National Institute for Material Science (NIMS)
Kazuma Matsumura: Tohoku University
Takeshi Kumasaka: Tohoku University
Yoshihiro Fujiwara: Tohoku University
Atsushi Tsukazaki: Tohoku University
Masashi Kawasaki: University of Tokyo
Tomohiro Otsuka: Tohoku University

Nature Communications, 2024, vol. 15, issue 1, 1-8

Abstract: Abstract Quantum devices such as spin qubits have been extensively investigated in electrostatically confined quantum dots using high-quality semiconductor heterostructures like GaAs and Si. Here, we present a demonstration of electrostatically forming the quantum dots in ZnO heterostructures. Through the transport measurement, we uncover the distinctive signature of the Kondo effect independent of the even-odd electron number parity, which contrasts with the typical behavior of the Kondo effect in GaAs. By analyzing temperature and magnetic field dependences, we find that the absence of the even-odd parity in the Kondo effect is not straightforwardly interpreted by the considerations developed for conventional semiconductors. We propose that, based on the unique parameters of ZnO, electron correlation likely plays a fundamental role in this observation. Our study not only clarifies the physics of correlated electrons in the quantum dot but also holds promise for applications in quantum devices, leveraging the unique features of ZnO.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-024-53890-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53890-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-024-53890-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53890-2