EconPapers    
Economics at your fingertips  
 

Energy landscape of a Kv channel revealed by temperature steps while perturbing its electromechanical coupling

Bernardo I. Pinto-Anwandter, Carlos A. Z. Bassetto, Ramon Latorre () and Francisco Bezanilla ()
Additional contact information
Bernardo I. Pinto-Anwandter: University of Chicago
Carlos A. Z. Bassetto: University of Chicago
Ramon Latorre: Universidad de Valparaiso
Francisco Bezanilla: University of Chicago

Nature Communications, 2025, vol. 16, issue 1, 1-14

Abstract: Abstract Voltage-dependent potassium channels (Kv) play a crucial role in membrane repolarization during action potentials. They undergo voltage-dependent structural conformational transitions according to their distribution across their energy landscape. Understanding these transitions helps us comprehend their molecular function. Here, we used sudden and sustained temperature changes (Tstep) combined with different voltage protocols and mutations to dissect the energy landscape of the Shaker K+ channel. We used two mutations, ILT (V369I, I372L, and S376T) and I384N, that affect the coupling between the voltage sensor (VSD) and the pore domain (PD), to obtain the temperature dependence of VSD last transition and the intrinsic temperature dependence of the pore, respectively. Our findings support a loose or tight conformation of the electromechanical coupling. In the loose conformation, the movement of the VSD is necessary but not sufficient to efficiently propagate the electromechanical energy to open the pore. In contrast, this movement is effectively translated into pore opening in the tight conformation. Our results describe the energy landscape of the Shaker channel and how its temperature dependence can be modulated by affecting its electromechanical coupling.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-58443-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58443-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-58443-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58443-9