Unveiling chromatin dynamics with virtual epigenome
Ming-Yu Lin,
Yu-Cheng Lo and
Jui-Hung Hung ()
Additional contact information
Ming-Yu Lin: National Yang Ming Chiao Tung University
Yu-Cheng Lo: National Yang Ming Chiao Tung University
Jui-Hung Hung: National Yang Ming Chiao Tung University
Nature Communications, 2025, vol. 16, issue 1, 1-16
Abstract:
Abstract The three-dimensional organization of chromatin is essential for gene regulation and cellular function, with epigenome playing a key role. Hi-C methods have expanded our understanding of chromatin interactions, but their high cost and complexity limit their use. Existing models for predicting chromatin interactions rely on limited ChIP-seq inputs, reducing their accuracy and generalizability. In this work, we present a computational approach, EpiVerse, which leverages imputed epigenetic signals and advanced deep learning techniques. EpiVerse significantly improves the accuracy of cross-cell-type Hi-C prediction, while also enhancing model interpretability by incorporating chromatin state prediction within a multitask learning framework. Moreover, EpiVerse predicts Hi-C contact maps across an array of 39 human tissues, which provides a comprehensive view of the complex relationship between chromatin structure and gene regulation. Furthermore, EpiVerse facilitates unprecedented in silico perturbation experiments at the “epigenome-level” to unveil the chromatin architecture under specific conditions. EpiVerse is available on GitHub: https://github.com/jhhung/EpiVerse .
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-025-58481-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58481-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-58481-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().