EconPapers    
Economics at your fingertips  
 

Shape morphing of soft robotics by pneumatic torsion strip braiding

Changchun Wu, Hao Liu, Senyuan Lin, James Lam, Ning Xi and Yonghua Chen ()
Additional contact information
Changchun Wu: The University of Hong Kong
Hao Liu: The University of Hong Kong
Senyuan Lin: The University of Hong Kong
James Lam: The University of Hong Kong
Ning Xi: The University of Hong Kong
Yonghua Chen: The University of Hong Kong

Nature Communications, 2025, vol. 16, issue 1, 1-11

Abstract: Abstract Shape morphing technologies are significant in soft robotic applications. To this end, we introduce a new shape morphing approach using pneumatic torsion strips, inspired by the shape of a Möbius strip. A pneumatic torsion strip is simply formed by bending and twisting a ribbon of bladder. When locating a pneumatic torsion strip on a braided soft body, its intrinsic elastic energy always tends to bend the soft body. Meanwhile, its elastic energy is adjustable and correlated with the geometry and internal-pressure dependent material properties. Compared with common strain-mismatch based morphing methods, pneumatic torsion strips directly exert bending torque to the soft body without generating in-plane strain and affecting rigidity. As such, the local bending of a soft body over a large curvature range at almost any position can be realized through pneumatic torsion strips. A mathematical model describing the geometry and elastic energy of a pneumatic torsion strip is also established to explain its basic shape morphing mechanism. Finally, we provide several case studies to illustrate their performance and advantages in practical shape morphing applications, such as a 2 kg meter-scale transformable carpet that can curl like plant tendrils.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-59051-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59051-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-59051-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-05-10
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59051-3