EconPapers    
Economics at your fingertips  
 

Decoding DNA sequence-driven evolution of the human brain epigenome at cellular resolution

Emre Caglayan () and Genevieve Konopka ()
Additional contact information
Emre Caglayan: UT Southwestern Medical Center
Genevieve Konopka: UT Southwestern Medical Center

Nature Communications, 2025, vol. 16, issue 1, 1-12

Abstract: Abstract DNA-based evolutionary comparisons of regulatory genomic elements enable insight into functional changes driven in cis, partially overcoming tissue inaccessibility. Here, we harnessed adult and fetal cortex single-cell ATAC-seq datasets to uncover DNA substitutions specific to the human and human-ancestral lineages within apes. We found that fetal microglia identity is evolutionarily divergent in all lineages, whereas other cell types are conserved. Using multiomic datasets, we further identified genes linked to multiple lineage-divergent gene regulatory elements and implicated biological pathways associated with these divergent features. We also uncovered patterns of transcription factor binding site evolution across lineages and identified expansion of bHLH-PAS transcription factor targets in human-hominin lineages, and MEF2 transcription factor targets in the ape lineage. Finally, conserved features were more enriched in brain disease variants, whereas there was no distinct enrichment of brain disease variants on the human lineage compared to its ancestral lineages. Our study identifies ancestral evolutionary patterns of the human brain epigenome at cellular resolution.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-60665-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60665-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-60665-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-26
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60665-w